An Effective Streams Clustering Method for Biomedical Signals
نویسنده
چکیده
In the healthcare industry, the ability to monitor patients via biomedical signals assists healthcare professionals in detecting early signs of conditions such as blocked arteries and abnormal heart rhythms. Using data clustering, it is possible to interpret these signals to look for patterns that may indicate emerging or developing conditions. This can be accomplished by basing monitoring systems on a fast clustering algorithm that processes fast-paced streams of raw data effectively. This paper presents a clustering method, POD-Clus, which can be useful in computer-aided diagnosis. The proposed method clusters data streams in linear time and outperforms a competing algorithm in capturing changes of clusters in data streams.
منابع مشابه
Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملA Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept
Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...
متن کاملExtraction of Respiratory Signal Based on Image Clustering and Intensity Parameters at Radiotherapy with External Beam: A Comparative Study
Background: Since tumors located in thorax region of body mainly move due to respiration, in the modern radiotherapy, there have been many attempts such as; external markers, strain gage and spirometer represent for monitoring patients’ breathing signal. With the advent of fluoroscopy technique, indirect methods were proposed as an alternative approach to extract patients’ breathing signals...
متن کاملGranularity Adaptive Density Estimation and on Demand Clustering of Concept-Drifting Data Streams
Clustering data streams has found a few important applications. While many previous studies focus on clustering objects arriving in a data stream, in this paper, we consider the novel problem of on demand clustering concept drifting data streams. In order to characterize concept drifting data streams, we propose an effective method to estimate densities of data streams. One unique feature of ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCMAM
دوره 1 شماره
صفحات -
تاریخ انتشار 2010